skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ho, Jimmy Pham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Functional genomics is a powerful approach for uncovering molecular mechanisms underlying complex biological processes by linking genetic changes to observable phenotypes. In the context of algal symbiosis, this framework offers significant potential for advancing our understanding of the molecular interactions between marine dinoflagellates and their cnidarian hosts, such as corals—organisms that are foundational to marine ecosystems and biodiversity. As coral bleaching and reef degradation intensify due to environmental stressors, novel strategies are urgently needed to enhance the resilience of these symbiotic partnerships. This opinion piece explores emerging directions in functional genomics as applied to coral–algal symbiosis, with a focus on uncovering the molecular pathways that govern photosynthesis and stress tolerance. We discuss the challenges and opportunities in applying functional genomics to support coral health, improve ecosystem resilience, and inform biotechnological applications in agriculture and medicine. Together, these insights posit the potential for engineered symbioses as a needed focus in mitigating biodiversity loss and supporting sustainable ecosystem management in the face of accelerating environmental change. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026